Note: Attempt five questions, selecting at least one question but not more than two questions from each unit.

नोट : प्रत्येक इकाई से न्यूनतम एक-एदं प्रश्न किन्तु दो प्रश्न से अधिक नहीं, का चयन करते हुए पाँ, प्रश्नों के उत्तर दीजिए।

UNIT-I
(इकाई-I)

1. (i) If $x^{y}=e^{x-y}$, prove that $\frac{d y}{d x} \quad \frac{\log x}{(1+\log x)^{2}}$.
(ii) If $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$, show that $\frac{d y}{d x}+\frac{x}{y}=0$.
(i) यदि $x^{y}=e^{x-y}$, तो सिद्ध कीजिए कि $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
(ii) यदि $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$, तो प्रदर्शित कीजिए कि

$$
\frac{d y}{d x}+\frac{x}{y}=0 .
$$

2. (i) Verify Euler's theorem for the function $u(x, y)=$ $x^{3}+y^{3}+x^{2} y+x y^{2}$.
(ii) Find two positive number, whose sum is 16 and the sum of whose cubes ig ninimum.
(i) फलन $u(x, y)=x^{2} 9 y^{3}+x^{2} y+x y^{2}$ के लिए यूलर प्रमेय को सत्यापित कीजिए।
(ii) दो ऐसी धनात्मक संख्याएँ ज्ञात कीजिए जिनका योग 16 है और जिनके घनों का योग न्यूनतम है।
3. (i) Evaluate : $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x$.
(ii) Evaluate : $\int \frac{5 x+6}{x^{2}-3 x+2} d x$.
(i) मान ज्ञात कीजिए : $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x$.
(ii) मान ज्ञात कीजिए : $\int \frac{5 x+6}{x^{2}-3 x+2} d x$.
4. (i) Find the area of the region included between the parabola $y^{2}=x$ and the straight line $x+y=2$.
(ii) If the market demand curve is $p=85-4 x-x^{2}$, where p and x respectively the price and the amount demanded of a commodity, find the cunsumer's surplus (i) when $x=5$ and (ii) when $p=64$.
(i) परवलय $y^{2}=x$ तथा सरल रेखा $x+y=2$ के बीच स्थित क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
(ii) यदि बाजार माँग वक्र $p=4 x-x^{2}$ है, जहाँ p और x क्रमशः किसी वस्तु का औूल्य और माँग की मात्रा हैं, उपभोक्ता अधिशेष ज्ञात कीजिए जब (i) $x=5$ तथा (ii) $p=64$ हो।

UNIT-II

(इकाई-II)
5.
(i) Without expanding the determinant, show thatat $\left.1 \begin{array}{lll}1 & a & a \\ a & a & 1\end{array} \right\rvert\,$

$$
\begin{equation*}
=(2 a+1)(1-a)^{2} . \tag{8}
\end{equation*}
$$

(ii) If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ then find $f(A)$, where

$$
\begin{equation*}
f(x)=x^{2}-5 x+7 \tag{8}
\end{equation*}
$$

(i) सारणिक को विस्तारित किये बिना प्रदर्शित कीजिए कि

$$
\left|\begin{array}{lll}
1 & a & a \\
a & 1 & a \\
a & a & 1
\end{array}\right|=(2 a+1)(1-a)^{2}
$$

(ii) यदि $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ तो $f(A)$ ज्ञात कीजिए, जहाँ

$$
f(x)=x^{2}-5 x+7
$$

6.

(i) Find the adoint of A, where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & -2 \\ 2 & 0 & 1\end{array}\right]$.

Also verify that $A .(\operatorname{adj} A)=|A| \cdot I_{3}$.
(ii) If $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 2 & 4\end{array}\right]$ then show that

$$
\begin{equation*}
(A B)^{-1}=B^{-1} A^{-1} . \tag{8}
\end{equation*}
$$

(i) A का सहखण्डज ज्ञात कीजिए, जहाँ $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & -2 \\ 2 & 0 & 1\end{array}\right]$. साथ ही सत्यापित भी कीजिए कि $A .(\operatorname{adj} A)=|A| \cdot I_{3}$.
(ii) यदि $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$ तथा $B=\left[\begin{array}{ll}0 & 1 \\ 2 & 4\end{array}\right]$ तो प्रदर्शित कीजिए कि $(A B)^{-1}=B^{1} A^{-1}$.
7. (i) Find the inverse of the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$ by using elementary row transformations.
(ii) Solve the following system of equations by matrix method:

$$
\begin{gather*}
x-y=2 \tag{8}\\
2 x+y=2 \\
x-2 y+z=4 .
\end{gather*}
$$

(i) प्राथमिक पंक्ति रूपान्तररण का प्रयोग करते हुए आव्यूह

$$
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right] \text { का व्युत्क्रम ज्ञात कीजिए । }
$$

(ii) आव्यूह विधि से निम्नलिखित समीकरण निकाय को हल कीजिए :

$$
\begin{gathered}
x-y-z=1 \\
2 x+y+z=2 \\
x-2 y+z=4 .
\end{gathered}
$$

8. (i) Solve the following linear programming problem by graphical method :

Maximize $Z=4 x+9 y$, subject to constraints :

$$
\begin{aligned}
x+5 y & \leq 200 \\
2 x+3 y & \leq 134 \\
x, y & \geq 0
\end{aligned}
$$

(ii) Find the dual of the 19 ,

Minimize $Z=2-2 x_{2}$, subject to costraints

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \geq 1 \\
x_{1}+2 x_{2} & \geq 1 \\
2 x_{1}+x_{2} & \geq 1 \\
\text { and } \quad x_{1} \geq 0, x_{2} & \geq 0 .
\end{aligned}
$$

(i) निम्नलिखित रैखिक प्रोग्रामन समस्या को आलेखीय विधि से हल कीजिए :

निम्नलिखित अवरोधों के अन्तर्गत $Z=4 x+9 y$ का अधिकतमीकरण कीजिए :

$$
\begin{aligned}
x+5 y & \leq 200 \\
2 x+3 y & \leq 134 \\
x, y & \geq 0
\end{aligned}
$$

(ii) निम्नलिखित रैखिक प्रोग्रामन समस्या का द्वैत ज्ञात कीजिए : निम्नलिखित अवरोधों के अन्तर्गत $Z=2 x_{1}+2 x_{2}$ का न्यूनतमीकरण कीजिए :

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \geq 1 \\
x_{1}+2 x_{2} & \geq 1 \\
2 x_{1}+x_{2} & \geq 1
\end{aligned}
$$

तथा

$$
x_{1} \geq 0, x_{2} \geq 0
$$

9. Using simplex method, solve following LPP :

Maximize $Z=3 x+5 y$ subject to constraints :

$$
\begin{equation*}
x+2 y \leq 20, x+y \leq 15, x \leq 5, x \geq 0, y \geq 0 \tag{16}
\end{equation*}
$$

सरल विधि का प्रयोग करते हुए निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :

निम्नलिखित अवरोधों के अन्तर्गत $Z=3 x+5 y$ का अधिकतमीकरण कीजिए :
$x+2 y \leq 20, x+y \leq 15, x \leq 5, x \geq 0, y \geq 0$.
10. (i) The difference between the simple and compound interest on a certain sum of money for 2 years at 4\% per annum is Re. 1. Find the sum.
(ii) Find the amount of an ordinary annuity of 12 monthly payments of Rs. 1000 that earn an interest at 12% per year compounded monthly.
(i) किसी राशि का 4% वार्षिक की दर से 2 वर्षों हेतु साधारण और चक्रवृद्धि ब्याज का अन्तर रु. 1 है। राशि ज्ञात कीजिए।
(ii) रु. 1000 के 12 माह के भुगतान की सामान्य वार्षिक वृत्ति की राशि ज्ञात कीजिए जिसे मासित्र चक्रवृद्धि पर 12% वार्षिक ब्याज मिलता है।

