Total Pages: 8

## BCE/A-20

21002

## BUSINESS MATHEMATICS Paper–BC-102

Time: Three Hours]

[Maximum Marks: 80

Note: Attempt *five* questions, selecting at least *one* question but not more than *two* questions from each unit.

नोट: प्रत्येक इकाई से न्यूनतम एक-एक्ट्र प्रश्न किन्तु दो प्रश्न से अधिक नहीं, का चयन करते हुए पाँचे प्रश्नों के उत्तर दीजिए।

UNIT-I

1. (i) If  $x^y = e^{x-y}$ , prove that  $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$ . (8)

(ii) If 
$$x = \frac{1-t^2}{1+t^2}$$
,  $y = \frac{2t}{1+t^2}$ , show that  $\frac{dy}{dx} + \frac{x}{y} = 0$ .

(8)

(i) यदि  $x^y = e^{x-y}$ , तो सिद्ध कीजिए कि  $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$ .

21002/PDF/KD/674/Trans.

[P.T.O.

(ii) यदि 
$$x = \frac{1-t^2}{1+t^2}$$
,  $y = \frac{2t}{1+t^2}$ , तो प्रदर्शित कीजिए कि

$$\frac{dy}{dx} + \frac{x}{v} = 0.$$

2. (i) Verify Euler's theorem for the function 
$$u(x, y) = x^3 + y^3 + x^2y + xy^2$$
. (8)

- (ii) Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum. (8
- (i) फलन  $u(x, y) = x^3 + y^3 + x^2y + xy^2$  के लिए यूलर प्रमेय को सत्यापित को जिए।
- (ii) दो ऐसी धनात्मक संख्याएँ ज्ञात कीजिए जिनका योग 16 है और जिनके घनों का योग न्यूनतम है।

3. (i) Evaluate: 
$$\int e^x \left(\frac{1}{x} - \frac{1}{r^2}\right) dx$$
. (8)

(ii) Evaluate: 
$$\int \frac{5x+6}{x^2-3x+2} dx$$
. (8)

(i) मान ज्ञात कोजिए : 
$$\int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$$
.

(ii) मान ज्ञात कीजिए : 
$$\int \frac{5x+6}{x^2-3x+2} dx$$
.

- 4. (i) Find the area of the region included between the parabola  $y^2 = x$  and the straight line x + y = 2. (8)
  - (ii) If the market demand curve is  $p = 85 4x x^2$ , where p and x respectively the price and the amount demanded of a commodity, find the cunsumer's surplus (i) when x = 5 and (ii) when p = 64.
  - (i) परवलय  $y^2 = x$  तथा सरल रेखा x + y = 2 के बीच स्थित क्षेत्र का क्षेत्रफल जात कीजिए।
  - (ii) यदि बाजार माँग वक्र  $p = 84 \cdot 4x x^2$  है, जहाँ p और x क्रमश: किसी वस्तु का पूल्य और माँग की मात्रा हैं, उपभोक्ता अधिशेष ज्ञात की जिए जब (i) x = 5 तथा (ii) p = 64 हो।

## UNIT-II (इकाई-II)

5. (i) Without expanding the determinant, show that 
$$\begin{vmatrix} 1 & a & a \\ a & 1 \end{vmatrix}$$

$$= (2a+1) (1-a)^{2}. (8)$$

(ii) If 
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then find  $f(A)$ , where

$$f(x) = x^2 - 5x + 7. ag{8}$$

21002/000/KD/674

3

[P.T.O.

$$\begin{vmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{vmatrix} = (2a+1)(1-a)^2.$$

(ii) यदि 
$$A=\begin{bmatrix}3&1\\-1&2\end{bmatrix}$$
 तो  $f(A)$  ज्ञात कीजिए, जहाँ 
$$f(x)=x^2-5x+7.$$

$$f(x) = x^{2} - 5x + 7.$$
6. (i) Find the adjoint of  $A$ , where  $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ 2 & 0 & 1 \end{bmatrix}$ .

Also verify that 
$$A$$
 (adj  $A$ ) =  $|A| \cdot I_3$ . (8)

(ii) If 
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$  then show that 
$$(AB)^{-1} = B^{-1}A^{-1}.$$
 (8)

(i) 
$$A$$
 का सहखण्डज ज्ञात कीजिए, जहाँ  $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ 2 & 0 & 1 \end{bmatrix}$ .

साथ ही सत्यापित भी कीजिए कि  $A.(\text{adj }A) = |A| . I_3.$ 

(ii) यदि 
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
 तथा  $B = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$  तो प्रदर्शित कीजिए कि  $(AB)^{-1} = B^{-1}A^{-1}$ .

- 7. (i) Find the inverse of the matrix  $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$  by using elementary row transformations. (8)
  - (ii) Solve the following system of equations by matrix method: (8)

$$x - y = 2z$$

$$2x + y + z = 2$$

$$x - 2y + z = 4.$$

(i) प्राथमिक पंक्ति रूपान्तरण का प्रयोग करते हुए आव्यूह

$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
 का व्युत्क्रम ज्ञात कीजिए।

(ii) आव्यूह विधि से निम्नलिखित समीकरण निकाय को हल कीजिए :

$$x - y - z = 1$$
$$2x + y + z = 2$$
$$x - 2y + z = 4.$$

8. (i) Solve the following linear programming problem by graphical method: (8)

Maximize Z = 4x + 9y, subject to constraints :

$$x + 5y \leq 200$$

$$2x + 3y \leq 134$$

$$x, y \geq 0$$
.

(ii) Find the dual of the following LPP: (8)

Minimize  $Z = 2x_2$ ,

subject to constraints:

$$2x_1 + 4x_2 \ge 1$$

$$x_1 + 2x_2 \ge 1$$

$$2x_1 + x_2 \ge 1$$

and  $x_1 \ge 0, x_2 \ge 0.$ 

(i) निम्नलिखित रैखिक प्रोग्रामन समस्या को आलेखीय विधि से हल कीजिए:

निम्नलिखित अवरोधों के अन्तर्गत Z = 4x + 9y का अधिकतमीकरण कीजिए :

$$x + 5y \leq 200$$

$$2x + 3y \leq 134$$

$$x, y \geq 0.$$

21002/000/KD/674

$$2x_{1} + 4x_{2} \ge 1$$

$$x_{1} + 2x_{2} \ge 1$$

$$2x_{1} + x_{2} \ge 1$$

$$x_{1} \ge 0, x_{2} \ge 0.$$

9. Using simplex method, solve the following LPP:

तथा

Maximize Z = 3x + 5y Subject to constraints :

$$x + 2y \le 20, x + y \le 15, x \le 5, x \ge 0, y \ge 0.$$
 (16)

सरल विधि का प्रयोग करते हुए निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :

निम्नलिखित अवरोधों के अन्तर्गत Z = 3x + 5y का अधिकतमीकरण कीजिए :

$$x + 2y \le 20, x + y \le 15, x \le 5, x \ge 0, y \ge 0.$$

(i) The difference between the simple and compound interest on a certain sum of money for 2 years at 4% per annum is Re. 1. Find the sum. (8)

- (ii) Find the amount of an ordinary annuity of 12 monthly payments of Rs. 1000 that earn an interest at 12% per year compounded monthly.(8)
- (i) किसी राशि का 4% वार्षिक की दर से 2 वर्षों हेतु साधारण और चक्रवृद्धि ब्याज का अन्तर रु. 1 है। राशि ज्ञात कीजिए।
- (ii) रु. 1000 के 12 माह के भुगतान की सामान्य वार्षिक वृत्ति की राशि ज्ञात कीजिए जिसे मासिक चक्रवृद्धि पर 12% वार्षिक ब्याज मिलता है।